
Andrew Harmel-Law
Foreword by Sarah Wells

Facilitating
Software
Architecture
Empowering Teams
to Make Architectural
Decisions

This excerpt contains Chapter 11. The complete book is
available on the O’Reilly Online Learning Platform and

through other retailers.

Andrew Harmel-Law
Foreword by Sarah Wells

Facilitating Software Architecture
Empowering Teams to Make

Architectural Decisions

978-1-098-15186-7

[LSI]

Facilitating Software Architecture
by Andrew Harmel-Law

Copyright © 2025 Andrew Harmel-Law. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan
Development Editor: Rita Fernando
Production Editor: Clare Laylock
Copyeditor: Shannon Turlington
Proofreader: Piper Editorial Consulting, LLC

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2024: First Edition

Revision History for the First Edition
2024-11-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098151867 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Facilitating Software Architecture, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Thoughtworks. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098151867
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

11. Using a Technology Radar. 1
Sense Tech Trends and Capture Guidelines 1
Technology Radars Continually Collect and Share Guidance 2

How the Thoughtworks Technology Radar Works 3
Your Internal Technology Radar Will Be Structured Differently 7

Your Radar’s Place in an Advice Process 8
Creating Your Technology Radar 10

Blip Gathering 11
Blip Sorting and Validation 13
Blip Focusing 16
Blip Positioning 18
Blip Documenting 19
Radar Publishing 20

Updating Your Blips 22
Periodic Resweeps 22
Ad Hoc Updates Based on Shared Experience 24
Capturing Previous Blips and Their History 25

Conclusion 26

iii

CHAPTER 11

Using a Technology Radar

Being aware of the technical landscape and climate that surround you is important
for an effective decision process. Decisions benefit from being informed by your col‐
leagues’ and your wider organization’s collective past experiences and future inten‐
tions. But such a wealth of technical information can seem difficult both to capture
and to manage.

In this chapter, I’ll discuss how the collective intelligence can be distilled into a set of
regularly updated guidelines—the fourth alignment mechanism—and used to inform
everyone’s future decisions via a fourth supporting element to the advice process: a
technology radar that provides a snapshot of the technologies and techniques used in
your organization right now.

I’ll start introducing you to the technology radar by giving you a real-life example of
how it’s used in Thoughtworks before going on to describe how a technology radar
fits into the advice process. I’ll close by discussing how feedback from using the tech‐
nology radar in deciding can—and ought to—lead to updates in the radar itself.

Sense Tech Trends and Capture Guidelines
There is always a wealth of knowledge and experience in your organization about
your technical landscape and climate. Sociotechnical systems are terribly complex, so
it can be valuable to uncover and maintain a distilled set of guidelines that record
what has been tried, what has failed, what might be worth investigating, and what has
been learned across your software engineering organization.

This isn’t a trivial task. Seeking out this information can open up an ocean of inputs
and opinions. Capturing and presenting the collective experience of the technical
landscape needs to be done in a clean and accessible way. If not, it’s easy to drown in
the sea of raw information.

1

1 By the time you read this, my next/current/old-news picks will be laughably out of date. That’s the point.
Things change fast in the world of tech, and no more so than in the world of web frameworks, apart from
perhaps large language models.

Technology Radars Continually Collect
and Share Guidance
A technology radar captures a snapshot of the technologies and techniques used in
your organization as well as your collective experience with them. First created by
Thoughtworks, and structured like the radars you imagine air traffic controllers sit‐
ting in front of, the technology radar is an “opinionated” view of technology trends
(both current and receding) in software languages and frameworks, tools, platforms,
and techniques. Its biggest strength lies in how it uses the radar metaphor to visually
represent these important aspects of the current technology landscape and the cli‐
matic movements of various technological “blips” across it.

The Thoughtworks Technology Radar, as I write, is shown in Figure 11-1.

Tracking these tech-trend “blips” as aircraft would be tracked (albeit a lot slower
moving), the radar allows viewers to rapidly see, for example, what is up and coming
in the world of frontend frameworks (Astro, apparently), what’s the current flavor of
the month (I’m reliably informed it’s Svelte at the time of writing), and what’s begin‐
ning to fade. (Did anyone actually enjoy using AngularJS?)1

The beam of the Thoughtworks Radar sweeps the global tech landscape on a six-
month basis. These sweeps crowdsource experiences of Thoughtworkers on client-
delivery projects, and the blips that represent these projects are positioned based on
how they are being used. For a blip to appear on the radar, it has to have been used in
delivery on at least one client project. To be centered, a blip has to have become a
Thoughtworks “sensible default,” meaning it’s their go-to unless specific circumstan‐
ces suggest an alternative is preferable. Taken together, the collection of blips and
their respective positions is a powerful summation of the organization’s collective
experiences and perceptions across all clients.

A technology radar is therefore a great tool for sharing guidelines about a significant
number of technology trends, in a compact and consumable form, and all sourced
from a vast collective.

2 | Chapter 11: Using a Technology Radar

Figure 11-1. The main overview of the Thoughtworks Technology Radar (Volume 29,
published September 2023)

How the Thoughtworks Technology Radar Works
Let’s take a closer look at how the Thoughtworks Technology Radar works. You can
see and interact with the latest version on the Thoughtworks website.

Technology Radars Continually Collect and Share Guidance | 3

https://oreil.ly/Qg1ob

Figure 11-1 shows the September 2023 Thoughtworks Technology Radar
overview. The radar consists of blips, which are then categorized into quadrants and
rings. The quadrants represent:

• Techniques
• Tools
• Platforms
• Languages and frameworks

The Thoughtworks radar is interactive. Clicking on the Tools quadrant opens a
zoomed-in view, with the names of each blip now listed and the names of the rings
more evident. See Figure 11-2.

Each blip on the radar represents a technology or technique that plays a role in soft‐
ware. Their position in a given ring on the radar represents Thoughtworks’s confi‐
dence in recommending that technology to their clients.

What are the rings? Starting at the outside and moving in, you have:

Hold
Proceed with caution.

Assess
Worth exploring with the goal of understanding how it will affect your enter‐
prise.

Trial
Worth pursuing. It’s important to understand how to build up this capability.
Enterprises can try this technology on a project that can handle the risk.

Adopt
Thoughtworks strongly feels that the industry should be adopting these items
where applicable. Thoughtworks uses them when it’s appropriate in their projects.

A blip combined with its ring position therefore clearly and succinctly captures
Thoughtworks’s current opinion on a topic.

As on a regular radar, blips are in motion. Their positions on the Thoughtworks
Technology Radar change to represent Thoughtworks’s increasing (or decreasing)
confidence in recommending them as they move through the rings over time.

For example, the Mermaid blip is represented as a circle with a quarter ring around it,
indicating it has been on previous radars and has moved in this particular edition. If
you look really closely, you can see that on the Mermaid blip, the quarter ring is on
the side closest to the center of the radar, which means its move was inward;
Thoughtworks is increasingly confident in recommending it to clients.

4 | Chapter 11: Using a Technology Radar

Figure 11-2. The tools quadrant of the Thoughtworks Technology Radar with the details
of the Mermaid blip expanded (Volume 29, published September 2023)

Each blip is accompanied by a short piece of text that is special to each version of the
radar. You can also view the blip’s history to see how it has changed, or moved
throughout the radar, over time. The history of Mermaid is shown in Figure 11-3.

Technology Radars Continually Collect and Share Guidance | 5

Figure 11-3. The full history of the Mermaid blip on the Thoughtworks Technology
Radar

At the top of Mermaid’s history page is the blip’s current status (“Adopt”) and when it
moved to this status (September 2023). The text on the right gives Thoughtworks’s
current thinking on Mermaid as a tool and why the collective feels it deserves its
place in the “Adopt” circle.

Complementing the blip’s current position are its previous entries on the radar. For
Mermaid, there is only one of these, from way back in November 2018 when it
entered the radar in “Trial.” You can see from that text what everyone thought about
it then. This text is unedited from 2018.

Other blips have more entries because their progress (or otherwise) across the radar
has been far more noteworthy and eventful. The OpenTelemetry blip is interesting. It
has collected four entries since its first appearance in March 2017 but has never man‐
aged to move out of “Trial” status.

Other blips also have a long history, but their movement is not always toward the
center. The AWS blip is illustrative here; it first appeared in July 2011 at “Adopt”
sta‐tus, with this ring position being reiterated in March 2012. However, in its third
and final appearance on the radar in November 2018, AWS moved out to “Trial”
because there were by then solid competitors in the market in the form of
Microsoft Azure and GCP.

The AWS blip illustrates one final important point. While a blip might stay on the
radar, it is not always represented visually. This is solely to preserve screen estate,
highlighting what Thoughtworks thinks is most important at the time of the current
version. All blips, current and future, can always be searched for.

6 | Chapter 11: Using a Technology Radar

https://oreil.ly/7QaiE
https://oreil.ly/_sUdT

2 The biggest differences are that the backing site isn’t included (I’ll show how to make your own), and blip
icons don’t change to indicate movement between volumes.

It’s Not Just Technologies that Belong on the Radar
Thoughtworks includes both patterns arising and antipatterns in the “Techniques”
quadrant. These are a valuable place to share lessons and guidance that don’t relate
directly to a specific technology. I am always on the lookout for “ESBs in API Gate‐
way’s clothing”, for instance.

Hopefully, you can see how rich a tool for capturing and sharing guidelines over time
a technology radar is. Not only does it capture and organize a fantastic amount of
information, but it also shows trends over time and (most important for our pur‐
poses) the tribal knowledge associated with historical movements and current posi‐
tions of blips.

Your Internal Technology Radar Will Be Structured Differently
Although your technology radar will look and work similarly to Thoughtworks’ Tech‐
nology Radar,2 your organization will make use of it slightly differently, both in terms
of its content and its structure.

First, while Thoughtworks doesn’t list any in-house tooling that their clients might
have created (it’s the clients’ intellectual property, not that of Thoughtworks, after all),
your internal radar is under no such restriction. Locating internal solutions in all
quadrants, strategic or de facto, along with honest assessments of their applicability
and current state as blips is a very powerful way to make it easy for everyone to know
what’s available to them in the form of invested-in strategic defaults. (I’ll return to
this in more detail in a later section of this chapter where I’ll explain just how power‐
ful this can be and how to harness it.)

Second, while your radar and the Thoughtworks version both capture and present
guidelines about the adoption of current and past technology trends, your context and
focus will be very different. The Thoughtworks radar is broadly focused: externally,
across the entire technology sector. Your radar, on the other hand, will fit into a very
specific niche: your decision processes and their encompassing sociotechnical system.
While the Thoughtworks radar exists to help their clients make good decisions and
avoid bad ones, your radar will focus on supporting distributed decision making
within your specific internal landscape and climate.

What this typically means for the structure is that the quadrants stay the same (Tech‐
niques, Tools, Platforms, and Languages and Frameworks) but the rings reflect the

Technology Radars Continually Collect and Share Guidance | 7

https://oreil.ly/ifs4p
https://oreil.ly/ifs4p

transit of technologies through your organization (becoming “trial,” “adopt,” “hold,”
and finally “retire”).

You’re not bound to using these, but they are the ones I’ve repeatedly found most use‐
ful, and for the remainder of this chapter, they are the ones I’ll use for examples.

Your Radar’s Place in an Advice Process
How can an internal radar interact with your decision process? As with architectural
principles, you can start by adding a section in your ADR template for Relevant
Radar Blips as per the following example. Deciders can then list the pertinent blips in
the ADR—both their position and detailed notes—which brings them explicitly into
individual decisions.

EXAMPLE

ADR00X – [TITLE]

Date
Dec 22, 2022

Status
[DRAFT]/[PROPOSED]/[ACCEPTED]/[ADOPTED]/[SUPERSEDED]/
[EXPIRED]

Decision
[A summary of your decision in a few lines.]

Relevant radar blips
[List here all blips that are directly relevant to this decision, whether the chosen
option follows their guidance or takes another route. This can help create and
focus both your options and their consequences.]

Context
[The context of your decision—the surrounding environment in which it was
taken (including any constraints), the relevant steps which took you to this point,
and the forces which made it necessary.]

A blip and its ring convey a lot on their own, but don’t forget the explanatory text.
This is a rich resource, especially if a blip history is also available. (I’ll talk about how
to capture blip history in “Updating Your Blips” on page 22.) For example, before try‐
ing something new—a tool, library, platform service, or technique—a team can see if
anyone else in the organization has looked at it already, without having to ask. Decid‐
ers can see highlights of what others learned from the experience and more by refer‐
ring to the blip’s description text. If you choose to capture it in ADRs, this description

8 | Chapter 11: Using a Technology Radar

can flag which teams the experience comes from, which can point advice seekers in
the right direction.

Consequently, the radar allows deciders to rapidly scan the range of pretried solution
options at a glance. Furthermore, the ring position of blips illustrates clearly not only
the current suggestions and associated guidance (relevant blips in “adopt”) but also
the investigated futures (relevant blips in “trial)” and remaining legacy (blips in
“hold” and “retire”). Incorporating such guidance can improve your decisions signifi‐
cantly, embedding them more explicitly in your organization’s current context.

The presence of relevant blips and their positions can feed directly into a decision
ADR’s options and their consequential pros and cons. If a blip is widely adopted, then
making a decision that agrees with its position and description becomes moot. (This
is a solid indication that you’re not in the process of taking a “significant” decision.)
However, as with architectural principles, a decision that looks like it is going to devi‐
ate from the current blip landscape—either by treating a blip as if it is in a different
ring or by adding a new blip—must flag this fact explicitly in an ADR, explicitly
addressing it in the text of the Context, Options, and Consequences sections. Even in
these cases, the “default” (i.e., blip-aligned) options ought to be listed in the ADR, if
only to articulate why they aren’t preferred.

Highlighting relevant blips calls out any tension between an in-progress decision and
the current collectively agreed technical guidelines as represented in the radar. This
clarity is excellent grist for advice offering, whether it takes place in an architecture
advice forum conversation or not. Any discussion, argumentation, and advice arising
will likely focus on two key areas:

• Why does this decision need to take a different path?
• What is unsuitable about the defaults that are in existence?

Advice focused in this way is incredibly valuable. It can call in other blips, historical
and up and coming, resulting in a rich and productive conversation. The resulting
laser-targeted advice can then be recorded in the ADR and rolled into the decision.

However you use your radar to navigate your technical landscape, bear in mind that the
radar’s guidance (compared to principles) is advisory in nature rather than a reflection
of a shared commitment. The radar is fundamentally a reflection of a current state and
its past as well as the guidance arising from that. Radar blips give an idea of what, if
anything, is the current de facto solution in a problem space: what’s been done in the
past and what teams might be experimenting with. Forging a new path when it comes
to decisions that relate to blips is a lot less likely to raise eyebrows, but such a deviation
should be specifically and concretely addressed in an ADR.

While the majority of radar-decision interactions flow from blips to decisions, this is
not a one-way relationship. As I’ve just shown, decisions and the ADRs that result

Your Radar’s Place in an Advice Process | 9

from them can exert a force in the opposite direction, updating the radar. There are
two main circumstances when this feedback could take place. I’ll cover them in more
detail later in the chapter, but I’ll mention them now as they arise from the interac‐
tion between decisions and the radar.

First, while many deciders will flag their adherence to the current radar guidance by
saying, “Our decision aligns to these blips,” others will be saying, “Our decision con‐
tradicts the current blips and their position.” Perhaps it’s the spiking of an entirely
new framework or a decision that moves a specific practice from “trial” to “adopt.” In
these cases, the radar may be due for an update.

For example, if a decision is taken to try out a new language, then a blip should be
added in the “Languages and Frameworks” quadrant’s “trial” ring. Or if a decision is
taken to migrate a number of Kubernetes Pods from a previously standard home‐
grown kOps cluster running on AWS Elastic Container Service (ECS) instances onto
Amazon EKS, then the EKS blip might move from “trial” to “adopt” while the kOps
and ECS blips might move to “hold.”

You could make updating the radar explicit via a process, though in my experience,
this happens anyway without anyone having to push it explicitly. Remember, your
goals here are the broadest engagement with your evolving architecture as possible, as
well as a growing architectural mindset across all team members. I’ll discuss how and
when I go about this in “Updating Your Blips” on page 22.

Second, considering the longer-term blip lifecycle is useful for those wondering
where to place strategic investments. Perhaps the time has come for the delivery plat‐
form team to make a self-serve template for a certain shape of Rust microservice, or
on the other hand, time and effort perhaps ought to be put into the intentional
removal of that last Bull mainframe running that old customer database. (I consider
this in more detail in the “Consciously Managing Strategic iInterventions” section of
a supplementary article on the book website.)

Creating Your Technology Radar
Let’s now use the open source Thoughtworks “build your own radar” (BYOR) tool to
build an interactive version of your radar. (You can find the example spreadsheet with
links to the published radar here.) With that, you can visually map out the technology
trends affecting your organization, past, present, and future. Importantly, alongside
each of them you can capture the guidance that everyone wants to share about their
relevant experiences.

To use the BYOR tool, go to the Build Your Own Radar page and follow the instruc‐
tions to create a new spreadsheet for recording your blips. You’re then ready to start
with what can be the most fun part: collecting the blips. This is the equivalent of

10 | Chapter 11: Using a Technology Radar

https://oreil.ly/4ZO8j
https://oreil.ly/4ZO8j
https://oreil.ly/CAJf2
https://oreil.ly/CAJf2
https://oreil.ly/zzJTD

sweeping a radar beam around a full 360 degrees, sensing what technologies and
techniques are in each of your four quadrants.

After gathering the raw blip data from the experiences of your entire technology
organization, you’ll then go through the “sense-making” steps of sorting and valida‐
tion, focusing, positioning, documenting, and finally publishing. All of these steps
will happen in the spreadsheet. At any point in the process, you can pass the spread‐
sheet data to the BYOR tool to render it in the format I showed you in Figure 11-1.

Blip Gathering
In this step, the goal is to gather the raw, unfiltered suggestions for blips from all rele‐
vant parties. The task of gathering radar inputs and turning them into something that
offers guidance to everyone is not a one-person job. Just as architectural principles
should come from the collective, so should radar blips. Unlike architectural princi‐
ples, however, blip gathering is best done asynchronously.

Your First Radar Sweep Takes the Longest
Your first sweep of your radar will take the longest because it is starting from nothing
and capturing the most blips–everything you have now in your organization. It’s
establishing a baseline.

It’s essential that you offer everyone the opportunity to be involved so that you get the
most accurate and detailed overview of your current landscape and the prevailing cli‐
mate. When you capture that, your radar stands the best chance of being useful in its
task of offering guidance and aligning everyone.

To run a sweep, you first need to decide how much of your software engineering
organization your sweep will cover. It works best to set this scope around one or more
(or all) products along their entire lifecycle. Sweeps bounded by departmental, organi‐
zational, or role lines tend to miss important blips, such as testing tools or rollback
techniques that will affect those same products.

This means you will be including disciplines like operations, UX, product, QA, security
data, and delivery. Organization-supporting functions like people teams (aka human
resources), finance, and legal are likely to fall outside your net, but you should give seri‐
ous consideration to including teams like regulatory and others that, in other circum‐
stances, are sources of CFRs. If you are in doubt, in my experience it’s better to leave
them out this time and include them in a future sweep or add their blips one at a time
afterward.

Once you have your list of people, you can begin. The easiest way to do this is with a
spreadsheet that has your columns and valid fields preset. Figure 11-4 shows what

Creating Your Technology Radar | 11

a Google spreadsheet doing this might look like. (All the following spreadsheet
images are linked to online versions.)

Figure 11-4. A Google spreadsheet used to gather blips containing some example data in
each of the fields (“isNew” column hidden)

Notice that on the right, there is an extra column not in the Thoughtworks spread‐
sheet: source. I’d advise against adding fields apart from this one. As you create and
start to use the radar, it helps to know who submitted a blip, whether an individual or
a team. This allows everyone to go back to the submitter if something about the blip
is unclear. And it has benefits when the radar is in use, but I’ll get to those later.

When you share the blip collection sheet with everyone, make it clear what your
intentions are by including a cover sheet that describes the technology radar concept,
explains the process you are asking everyone to follow, and links to the Thought‐
works Technology Radar and explainer videos, so contributors have a good idea of
what they are doing. It also makes sense to state clearly how this will fit into your
decision process.

How you drive the collection will depend on your organization’s engineering culture.
I’ve worked with clients who’ve announced the call for blip submissions at an all-hands
meeting and then shared the empty spreadsheet with everyone with a deadline for com‐
pletion; everything else just self-organizes. I’ve also had clients who began similar
announcements but then hosted a series of facilitated sessions, moving team by team
and collecting blips that way. Most organizations sit somewhere between these two.

The description is the most valuable field to capture at this stage. Encourage contrib‐
utors to dump raw information in here. If there is disagreement about a blip, capture
that too, and if different teams have different thoughts on the same blip, suggest that
they log their versions separately. You’re very much not looking for agreement here,

12 | Chapter 11: Using a Technology Radar

https://oreil.ly/DG_VG
https://oreil.ly/DG_VG

3 This is advice, not a rule. Not everyone follows semantic-versioning principles, especially when marketing
gets involved. The goal is that you get enough details of blips that are significantly different enough to be
treated separately.

simply awareness. Commenting on the descriptions of blips that others added should
be encouraged. If disagreement exists, then surface it.

Letting teams and other groups self-organize works well, but be aware of the specifics of
your culture because you want to be confident that the blips gathered will be broadly
representative and of a solid enough quality to take to the next stage. By this, I mean:

• For each blip, all columns need to be filled in.
• This is an initial scan: you want everything, future, current, and legacy. If it’s

affecting your organization right now, capture it.
• It’s not just technology—remember techniques. Don’t restrict yourself to industry-

standard approaches either. Capture how you do it, pattern or antipattern.
• Don’t worry about duplicates—the “focusing and positioning” stage resolves that.
• Capture all the major versions of all the things you use. If you have Java Runtime

Environments (JREs) from version 1.1 all the way to version 21, then add blips
for each one. If you have several versions of a library, list them all out, too.3

• Capture all the variety of the things. If you mix home-developed Kubernetes
clones, kOps, EKS, and a million other flavors, list them all out.

• Think about the entire software delivery lifecycle, from ideation to sunset.
• Think about the entire tech landscape, from Internet of Things (IoT) to offline

cold storage in a permafrosted Icelandic bunker.
• Don’t forget standards: open, closed, and de facto internal.

Lock Then Copy the Sheet After Every Step Is Completed
Before moving on to each subsequent step in radar creation, lock your blip-gathering
sheet (“protect” is what Google Sheets calls it), then take a snapshot copy to work on.
This means the data won’t continue to change underneath you as latecomers try to
add their last few blips, but it will mean they are disappointed. To avoid this, set a
deadline for the current stage.

Blip Sorting and Validation
At this point, you will have a lot of blips in their raw form, shown in Figure 11-5. If
you rendered your radar right now, it’d be unfocused and not very usable. More

Creating Your Technology Radar | 13

4 A bit like tidying your child’s bedroom. Is that a random pile making its way glacially toward the bin or is it a
carefully thought-through and optimized filing system? Best to leave it for now and check with them first…

important, it stands little chance of representing a balanced and nuanced view of your
technology landscape and climate. To make sense of this raw data, the collective will
need to be involved a second time to focus and position the collected blips. For that
activity to be a success, whoever is running the radar-creation process will need to do
some prep to first sort and validate the blips. That is the goal of this step.

Figure 11-5. Selection of raw, unsorted blip data after gathering but before sorting and
filtering, focusing, and positioning (“isNew” column hidden)

This preparation involves tidying up the blips in a way that respects the raw data you
have at the moment.4 Your radar should reflect what is going on in your organization
right now, not where the organization hopes to be. Bear this in mind as you sort and
validate each blip in turn, undertaking the following tasks in the following order:

14 | Chapter 11: Using a Technology Radar

https://oreil.ly/uCrjg
https://oreil.ly/uCrjg

1. Ensure that all the blips have isNew set to “true.”
2. Correct omissions (i.e., put things in quadrants or rings if these were not set).
3. Clarify with the author if a blip is not clear.
4. Group rows that are the same.
5. Group rows that are related.
6. Group rows by quadrant.
7. Group rows by proposed ring.

Postsorting and postfiltering, you should have something like the sample in
Figure 11-6. Every blip is set now to “isNew=true” as this is the first radar, the
source has been validated, and the ring and quadrant have been guessed for
Kotlin 1.8, which is now next to the blip for Kotlin 1.8.10. The teams of the blip
submitters have also been added for clarity.

Figure 11-6. Selection of sorted and filtered blip data, ready for focusing and positioning

Creating Your Technology Radar | 15

https://oreil.ly/mxkkO

5 This is the “Monira Rhaimi method.” Monira would never move sticky notes that had been placed by others if
they weren’t present. The notes represented their authors’ conception of something, which should be treated
with respect if we expect them to trust us.

Respect the Submitted Raw Blip Data
It’s very important to respect the inputs that have been provided so far.5 By all means,
correct spelling mistakes in the data entry and group them to make the upcoming
focusing session efficient, but don’t stray beyond this list—by deduplicating, for
example. Just because you think it’s a double or disagree with it doesn’t mean you can
change it. That kind of activity comes next.

Blip Focusing
After sorting and validating the blip information, it’s time to involve the collective
again to further focus them. In this step, the goal is to check that the blips are valid,
verify the blips’ description text, and decide which quadrant the blips belong in.
Unlike the gathering step, the focusing step should be done synchronously in a work‐
shop. These workshops can often take up to four hours.

The attendees for this blip-focusing session will ideally be the same group who were
asked to contribute the raw blips in the first place. However, if this is an unmanagea‐
ble number of people to have tied up in long working sessions, ask each group to
send one or more delegates whom everyone in the group empowers to act on their
behalf. By group, I mean a development team or one of the disciplines (e.g., UX, prod‐
uct, infra, InfoSec, etc.).

Even with reduced numbers, blip focusing is still one of those “expensive” workshops
if you multiply the number of attendees by the number of hours it takes, which is why
the sorting and validation step is so important, as you want to be able to move
through similar blips rapidly.

Don’t Scrimp on the Focusing Time
If you’re sweeping your radar cross-organization, then gathering the number of invit‐
ees for a four-hour session might simply be impractical. Splitting the session into two
2-hour pieces or even four slots of one hour each is fine. It’s also workable to run ses‐
sions for different products. For example, gather the teams working on a cloud-based
SaaS solution (not just the development teams—don’t forget the platform and sup‐
porting functions) for one session, and then separately the teams working on the
mobile app or some on-prem, thick-client systems.

16 | Chapter 11: Using a Technology Radar

Despite all these warnings, blip focusing can be great fun. There are very few oppor‐
tunities for everyone to get together and discuss the technology trends that are affect‐
ing your organization right now.

During the session (or sessions, if you split them up), work through every blip gath‐
ered, one after another. This is why it helps to have everything sorted in advance. If
there are a lot of rows that cover the same thing, then treat them all together.

For each blip, check if it is valid, clarifying the text in all cells as appropriate. If it is a
duplicate, then discuss and merge, taking care not to lose any of the valuable descrip‐
tion data and sources in each of the individual blips. If someone remembers some‐
thing that everyone forgot, then add it to an existing blip or a new one.

Individual Blips for Major Versions of the Same Technology Trend
If you are running multiple major versions of something, be that a framework or
library, a language, or even a platform, represent each version on the radar. This
allows you to show where the collective thinks everyone should be moving as a
default and where all your legacy is. This is one area where your organization’s radar
will differ from the Thoughtworks one.

It is also important to agree in which ring a blip sits. It will be self-evident in most
circumstances, but when it’s not, you can refer to the ring definitions and if you need
to, split a blip in two so that it can sit in both places. If this happens, make sure that
the names and descriptions of the new blips refer to the reason they are in that spe‐
cific ring. (Doing this often clarifies each of the blips and fits them to their ring
homes.) For example, you might have “Azure Functions for infrequent workloads” in
“adopt” and “Azure Functions for flexible workloads” in “trial.”

As the discussion progresses, make sure you (or another nominee) capture all the
commentary that surfaces. Disagreement is fine; you’re not looking for consensus. If
there are two ways to do things, show it. Two conflicting opinions as to the best way
to do or use something? Make both clear.

You will likely find that the “techniques” quadrant starts off relatively empty com‐
pared to the others, but watch out as discussion continues for things that could go in
here. This is a place where tribal memory and lessons learned can be captured. The
Thoughtworks radar has some great examples of this, such as “tracking health over
debt”, “bounded buy”, “Lambda pinball”, “team cognitive load”, “miscellaneous plat‐
form teams”, and “ESBs in API Gateway’s clothing”. (As you can see, this is an oppor‐
tunity to get creative with names. This isn’t just for fun. If a name is memorable, then
a technique stands a better chance of being adopted or avoided if it’s a bad smell.)

Creating Your Technology Radar | 17

https://oreil.ly/enmVB
https://oreil.ly/enmVB
https://oreil.ly/2NHhI
https://oreil.ly/1KeXz
https://oreil.ly/TrOOM
https://oreil.ly/UIAQz
https://oreil.ly/UIAQz
https://oreil.ly/VKtt-

Once you’re done, you should have a selection of blips, something like the sample in
Figure 11-7. Note that Kotlin 1.8.10 has been merged into the Kotlin 1.8 blip.
Also, some more detail on other teams’ use of Azure Functions has been added.

Figure 11-7. Selection of focused blips (“isNew” column hidden)

Blip Positioning
Once you have all your blips deduped and allocated to the right quadrants, you can
collectively position them, assigning each blip to the appropriate ring. If you are
keeping the defaults, these will be trial, adopt, hold, or retire. Unlike focusing, this
can be done offline and asynchronously, which also allows everyone in the greater
blip-providing community to contribute. Invite everyone who could have submitted
a blip, whether they chose to or not.

Prepare for positioning by taking a copy of the sheet with the focused blips on it and
making a new column for each person who will vote. Each cell in these new columns
should only allow each of the rings and “not voted” as values. Open the voting by
sharing the blip-positioning sheet with everyone who is enfranchised. Each voter
then votes for the ring they think each blip should be placed in.

18 | Chapter 11: Using a Technology Radar

https://oreil.ly/Bof_O

Voting Might Flush Out More Comments—Welcome This!
There’s nothing like a radar that is about to make its way into the open to flush out
final comments on the blips. To capture these, encourage everyone who is voting to
add these closing thoughts in the form of comments on the relevant blip’s description
cell. That way, voices can still be heard, and the last bit of context juice can be
squeezed from everyone.

As with blip gathering, set a time window for this voting (a week is generally good,
though if engagement is high, then one to three days can work, too) and remind peo‐
ple when the voting window is about to close. Once the voting window closes, protect
the sheet so that no more voting can take place. The position of each blip is the ring
with the majority of votes. Crunch the results and set the ring position for each blip
accordingly, as shown in Figure 11-8. You can see that while they are not always
unani‐mous, the votes all have clear winners. Some blips have shifted position:
Kotlin 1.5 has moved to “retire,” and Kotlin 1.8 has moved to “trial.”

Figure 11-8. Selection of blips and their votes (“description,” “quadrant,” and “source”
columns hidden)

You are now ready to move to the final stage of preparation prior to publishing.

Blip Documenting
At this point, you have all the raw information required to create your first technol‐
ogy radar, but it’s not yet in a digestible form. The goal of this step is to take all the
raw information from the descriptions, as well as any further comments that arose
during the focusing and positioning steps, and turn that into a short paragraph or
two of useful prose for each blip that would support the organization’s decision
process.

Creating Your Technology Radar | 19

https://oreil.ly/tmGUg
https://oreil.ly/tmGUg

While refining the documentation for each blip, it is important to retain all the infor‐
mation gathered from the previous steps. Capture the points of tension or conflict as
well, as every bit of information is useful. You may also want to refer (and link) to
other blips or to other architecture documentation, such as your tech strategy, high-
level architecture, ADRs, and more.

At Thoughtworks, a few individuals take on this job, but each blip description is
shared internally for everyone’s comment and feedback via a universal, editable Goo‐
gle document. This allows everyone to see and comment on the proposed text for
each blip. This text should capture how the blip is viewed by the collective, any points
of tension or conflict that have been identified during the latest sweep, and any other
information that may assist someone when making a decision that pertains to the
blip.

Again, this commenting/feedback phase has a time box placed on it, after which the
finalized text will be copied back into the spreadsheet ready for publishing, which is
the final step.

Radar Publishing
Once the blip descriptions have been written and reviewed, you are ready to publish
the first edition of your radar.

When you use the BYOR tool, there are a number of ways to host the result. The sim‐
plest, which involves no infrastructure on your end, is to use the free Thoughtworks
hosting service. This has a few restrictions. You have to use a Google spreadsheet as
your data source, and unless you choose to protect it, your radar effectively becomes
public. If you are using this approach, you just need to provide it with a link to your
private or public Google spreadsheet of blips. (Don’t forget to protect it so no one can
edit it.) This will then render the contents of your spreadsheet just like the Thought‐
works one, allowing everyone to interact with it in the same way.

If this hosting method or the associated Thoughtworks terms of use contradict your
organization’s InfoSec and data security policies, you can still use it, but you will need
to find a different place to run it; it’s just a JavaScript npm service reading from URL-
accessible files, and a Dockerized version is available. Alternatively, there is a plug-in
for Spotify’s Backstage developer portal, and other alternatives might be available by
the time you read this.

However you host your technology radar, when it is published, it will look like the
Thoughtworks one. Figure 11-9 shows our example radar published with the
Kotlin 1.8 blip highlighted and the tidied-up description on the right. Note that all
the blips will display as “new” as this is the first edition of your radar.

20 | Chapter 11: Using a Technology Radar

https://oreil.ly/3qTm5
https://oreil.ly/3KvNG

Figure 11-9. The published internal radar, showing the details of the Kotlin 1.8 blip

Once your technology radar is published, you can send out an announcement email
with a link to your interactive radar so that everyone can start using it in their deci‐
sions. You’ll also want to remind everyone through any other communication chan‐
nels where architecture decisions are discussed, such as an architecture advice forum.
Make it clear that while your radar is in the same format as the Thoughtworks one, it
serves a different purpose: to capture the collective guidance in a format that can sup‐
port decentralized deciding.

Don’t forget to take advantage of the fact that you can generate a PDF of your radar.
This is a great alternative for folks who prefer to consume their information in a static
format. You can also use it as a snapshot of the current state of the radar that can be
archived.

However you choose to publish the radar (on the Thoughtworks hosting service or
on your own), or however your people choose to consume the information (as an
interactive radar, a text-only document, or a PDF), the goal is to socialize your radar
so that it becomes another useful tool supporting organizational alignment and your
decision process as you collectively practice software architecture.

Creating Your Technology Radar | 21

Share Your Radar with New Joiners
Share the radar with your new hires so that they can familiarize themselves with your
current technology and technique landscape as well as its history and the associated
guidelines that the collective have provided.

Updating Your Blips
One tech-radar sweep isn’t enough. A traditional radar used to track aircraft sweeps
regularly and continuously, capturing updated views of the surrounding airspace.
Similarly, a technology radar should periodically sweep the current tech landscape
and organizational climate, turning them into updated guidelines.

The frequency of these sweeps depends mainly on how rapidly these environmental
factors are changing. I’ve seen quarterly cadences work, and half-yearly, too. The key
is to pay attention to how the radar is being consumed (or not) at the advice forum
and elsewhere. That should give you a good idea for when it’s worth investing in a
refresh.

Periodic Resweeps
Always plan for periodic resweeps, whether or not you capture ad hoc updates arising
from individual decisions. These follow a very similar set of steps as the initial cre‐
ation of the radar, but with a set of preexisting blips. The second and subsequent
gatherings will go much more quickly because they harvest far fewer blips.

Prepare for a resweep by copying the published blip data into a new sheet and setting
all the previous blips’ “isNew” values to “false” (Figure 11-10). You can then
encourage the blip submitters to contribute to this new sheet, once again setting a
deadline for blip submissions. (Remember to set the previously published radar
spreadsheet to read only and label it clearly.)

Make it clear to contributors that for the existing blips, this is not the time to suggest
changes in ring position, but additional information in the description cells is wel‐
come. This should be appended to what is already there, flagging who contributed it.
This might be as simple as recording that more teams have adopted a blip or that they
have moved away from it.

22 | Chapter 11: Using a Technology Radar

Figure 11-10. Setting the blips from the last edition of your radar to “isNew=false”
(“source” column hidden)

Newly submitted blips will most likely appear first in the “trial” ring. It is also likely
that a greater number of techniques will be submitted for this quadrant than when
the first scan took place. This seems to happen because the concept of this quadrant
tends to sink in only after the initial collection, but this section really blossoms as
organizational learning kicks in. Blips in the “techniques” quadrant are an excellent
place to make guidance born of experience actionable. Blips can reaffirm what has
been learned, making it available to those who have yet to join or have yet to take on
the responsibility of deciding. Some classic examples of this from the Thoughtworks
radar include: “SAFe™”, the aforementioned “ESBs in API Gateway’s clothing”, and
“Cloud lift and shift”.

Updating Your Blips | 23

https://oreil.ly/1Hxco
https://oreil.ly/1Hxco
https://oreil.ly/sDP7L
https://oreil.ly/LMXNv
https://oreil.ly/MhDGu

Wherever new blips land, you will again have to perform the same tidying-up activi‐
ties as in “Blip Sorting and Validation” on page 13 to prepare for the next collabora‐
tive stages. The process of sorting and validating the new and updated blips is exactly
the same as the original process.

The subsequent stages also proceed in a similar fashion to the first pass, but less time
needs to be allocated. Sorting and validation and focusing need take place only for
new blips, but the former is still best achieved in a workshop, which will take signifi‐
cantly less time than the first time around. Two hours is usually appropriate, but you
will know how long you need based on your experience from the first workshop.

(Re)positioning applies to all the blips and should again be done by opening up the
sheet to all in the blip-providing community. Not every blip needs to move, however;
your radar should reflect reality, and if nothing has changed, then there is no need to
update anything.

After (re)positioning is complete, documentation needs to reconsider all blips, too
(though not all preexisting blips may need an update if they’ve not moved rings). This
is a great time to discuss and provide updated guideline notes for all blips that stay on
the radar, even if this text is largely based on the version from the previous edition’s
blip. Calling out that something about a blip hasn’t changed can also be useful for the
reader. Remember that the goal is to make your collective wisdom and experience
explicit, whatever that is. On the other hand, if a blip has moved, then it’s a great
opportunity to explain why in the text. If increased—or decreased—numbers of
teams are using it, then this should be reflected. Finally, if a blip is no longer applica‐
ble, then it should be removed completely. (I’ll discuss strategic divestment and retir‐
ing legacy technologies in the final section of this chapter.)

Resweeps update your radar, but they have another benefit. By retaining the history
of blips, they provide a valuable learning resource and reference library. But whole-
scale resweeps aren’t the only way to capture blip updates.

Ad Hoc Updates Based on Shared Experience
While periodic resweeps keep your radar entirely up to date, they’re not the only
source of changes. Blip additions, movements, and clarifications should also emerge
from the advice process and architectural decisions.

Recall that a decision that effectively adds a new blip (either because there are cur‐
rently no blips that apply in that circumstance or because all those that do apply aren’t
sufficient or satisfactory for some reason) or a decision that advocates for a blip to be
treated as if it were in a different ring is a solid indication that a decision is “signifi‐
cant.” This fact should be highlighted in the ADR and advice sought. But what hap‐
pens after the decision is taken and the ADR adopted? This should (at least) flag the
blip as a candidate for an ad hoc update of the technology radar.

24 | Chapter 11: Using a Technology Radar

Decision-driven blip additions or updates are best moved forward via another ADR.
If it’s an entirely new blip, then this ADR should be raised by the team or individual
who took the initial decision. If it’s a blip update, then this responsibility will likely
fall to someone with a cross-system (probably architecture, but possibly a platform
team) role.

ADRs are a great format for such changes, and they can be very lightweight. Unlike
with updating the set of principles, it is sufficient to add or update the principle in
reference to the ADR that prompted the change, sharing the proposed new ring, the
new text, and the reason for the addition or move.

If you choose not to update the radar at this time, don’t worry. You can always catch
the blip and update it when your next sweep comes around, and you have your
explicit flagging of the deviation in the ADR. Whenever I postpone a radar update, I
keep a list of these potential ADRs, which I can use to prompt everyone when the
next sweep takes place to ensure that nothing gets missed. These can also be checked
when another decision comes along that looks like it’s proposing that the same blip be
moved. (It needn’t be the same type of change—remember, ADRs are great for trans‐
parent technical discussions. When combined with an advice process, they have a
high tolerance for a diversity of voices and advice.)

Capturing Previous Blips and Their History
However you update blips, it can be valuable to keep track of how they have changed
over time. If you choose to do this, you can create something that works similarly to
the history pages of the Thoughtworks Technology Radar.

To create blip histories, it’s best to have a wiki-type environment where each blip gets
its own page. This can also help when you retire blips from the main radar but want
to preserve the fact that they were once blipped.

For each blip in the original radar, move it to your wiki, one blip per page. Group
these pages together based on the quadrants if you like. (It makes browsing easier.)
When you create a new page, follow the structure and layout of the Thoughtworks
Technology Radar. When a blip makes it to a subsequent edition of the radar, put the
new ring and details at the top of the page.

Link the blips in the current radar to their history wiki pages by adding a hyperlink to
the blip description in the spreadsheet. This allows viewers of the radar to click
through to these history pages. Having this guidance at your fingertips helps greatly
when making new decisions.

Updating Your Blips | 25

Further Uses for a Technology Radar
As a technology radar becomes embedded within your advice process and wider soci‐
otechnical ecosystem, you may realize that it offers extra opportunities. I’ve collected
the opportunities I see most frequently into a separate article that covers additional
blip information you may want to capture as well as how to use your radar to con‐
sciously manage the higher levels of strategic interventions that I introduced in Chap‐
ter 9, both investments and divestments.

Conclusion
This chapter described a fourth supporting element: your own technology radar. I
considered how it offers a fun way to both sense for and make sense of the more sub‐
tle signals in your sociotechnical ecosystem and offer contextualized advice on them.
I showed how important the end result is as a support for the advice process generally
as well as a source of potential strategic investments and a way to manage strategic
divestments.

The technology radar takes the last place in my go-to mechanisms for supporting and
promoting decentralized and feedback-oriented practices of software architecture.
There might be alternatives—especially the supporting elements—and I encourage
you to experiment with them all, making sure you keep the goals of your approach in
mind.

As you probe, you will learn a lot more about the practice of decision making and its
place in both software development and sociotechnical systems. Part 3 focuses on
both topics from multiple angles, with the goal of enabling everyone who decides to
practice decentralized architecture for flow and feedback.

26 | Chapter 11: Using a Technology Radar

https://oreil.ly/_dbUu

About the Author
Andrew Harmel-Law is a tech principal at Thoughtworks, specializing in domain-
driven design, org design, software and systems architecture, Agile delivery, build
tools, and automation. Andrew’s experience spans the software development lifecycle
and many sectors.

Andrew is also an author and trainer for O’Reilly, having written not only this book
about facilitating software architecture but also a chapter about implementing the
Accelerate/DORA four key metrics. Andrew also runs regular online training ses‐
sions such as “Domain-Drive Design (First Steps)” and “Architecture Decision Mak‐
ing by Example.” What motivates Andrew is the humane delivery and sustainable
evolution of large-scale software solutions that fulfill complex user needs. Andrew
understands that people, architecture, process, and tooling all have key roles to play
in achieving this. Andrew has a great passion for open source software and its com‐
munities. Andrew has been involved with OSS to a greater or lesser extent since their
career began; as a user, contributor, expert group member, or paid advocate—most
notably as one of the Jenkins JobDSL originators.

Andrew enjoys sharing their experience as much as possible. This sharing is seen in
not only formal consulting engagements but also informally through mentoring, blog
posts, conferences (keynoting, speaking, and organizing), and open sourcing their
code.

If you want to reach out to Andrew, you can try LinkedIn, Mastodon, Bluesky, or (if
you must) Twitter.

https://oreil.ly/ZHWQ4
https://oreil.ly/Rec4F
https://oreil.ly/Rec4F
https://oreil.ly/g09EM
https://linkedin.com/in/andrewharmellaw
https://twit.social/@ahl
https://bsky.app/profile/andrewhl.bsky.social
https://twitter.com/al94781

Colophon
The animals on the cover of Facilitating Software Architecture are two-barred cross‐
bills (Loxia leucoptera). A North American version—currently listed as the same spe‐
cies—is known as the white-winged crossbill (two-barred crossbills tend to be a bit
larger than their North American counterparts).

Two-barred crossbills inhabit the Palearctic, mostly in Russia. Their preferred habi‐
tats involve spruce trees and cones, which are their source of food. They use their
unusual beak shapes to open the cones. Fun fact: two-barred crossbills are three times
more likely to have lower beaks crossing to the right than to the left.

The male plumage is red while the female is yellow-green. The female typically builds
the nest, lays three to four eggs, and incubates them. After the eggs hatch, the chicks
are fed by both parents until they fledge 22 to 24 days later; they then remain with
their parents for up to six weeks.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from British Birds. The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900_7x9.1875

	Cover
	Copyright
	Table of Contents
	Chapter 11. Using a Technology Radar
	Sense Tech Trends and Capture Guidelines
	Technology Radars Continually Collect and Share Guidance
	How the Thoughtworks Technology Radar Works
	Your Internal Technology Radar Will Be Structured Differently

	Your Radar’s Place in an Advice Process
	Creating Your Technology Radar
	Blip Gathering
	Blip Sorting and Validation
	Blip Focusing
	Blip Positioning
	Blip Documenting
	Radar Publishing

	Updating Your Blips
	Periodic Resweeps
	Ad Hoc Updates Based on Shared Experience
	Capturing Previous Blips and Their History

	Conclusion

	About the Author
	Colophon

